
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 9

Lecture 9-3: Polymorphism

reading: 9.2

self-check: #5-9

Copyright 2008 by Pearson Education
2

Polymorphism

 polymorphism: Ability for the same code to be used with

different types of objects and behave differently with each.

 System.out.println can print any type of object.

 Each one displays in its own way on the console.

 CritterMain can interact with any type of critter.

 Each one moves, etc. in its own way.

Copyright 2008 by Pearson Education
3

Coding with polymorphism
 A variable of type T can hold an object of any subclass of T.

Employee ed = new Lawyer();

 You can call any methods from Employee on ed.

 You can not call any methods specific to Lawyer (e.g. sue).

 When a method is called on ed, it behaves as a Lawyer.

System.out.println(ed.getSalary()); // 50000.0

System.out.println(ed.getVacationForm()); // pink

Copyright 2008 by Pearson Education
4

Polymorphism and parameters

 You can pass any subtype of a parameter's type.

public class EmployeeMain {

public static void main(String[] args) {

Lawyer lisa = new Lawyer();

Secretary steve = new Secretary();

printInfo(lisa);

printInfo(steve);

}

public static void printInfo(Employee empl) {

System.out.println("salary = " + empl.getSalary());

System.out.println("days = " + empl.getVacationDays());

System.out.println("form = " + empl.getVacationForm());

System.out.println();

}

}

OUTPUT:

salary = 50000.0 salary = 50000.0
vacation days = 21 vacation days = 10
vacation form = pink vacation form = yellow

Copyright 2008 by Pearson Education
5

Polymorphism and arrays
 Arrays of superclass types can store any subtype as elements.

public class EmployeeMain2 {
public static void main(String[] args) {

Employee[] e = { new Lawyer(), new Secretary(),
new Marketer(), new LegalSecretary() };

for (int i = 0; i < e.length; i++) {
System.out.println("salary: " + e[i].getSalary());
System.out.println("v.days: " + e[i].getVacationDays());
System.out.println();

}
}

}

Output:

salary: 50000.0
v.days: 15

salary: 50000.0
v.days: 10

salary: 60000.0
v.days: 10

salary: 55000.0
v.days: 10

Copyright 2008 by Pearson Education
6

Polymorphism problems
 4-5 classes with inheritance relationships are shown.

 A client program calls methods on objects of each class.

 You must read the code and determine the client's output.

 We always place such a question on our final exams!

Copyright 2008 by Pearson Education
7

A polymorphism problem
 Assume that the following four classes have been declared:

public class Foo {

public void method1() {

System.out.println("foo 1");

}

public void method2() {

System.out.println("foo 2");

}

public String toString() {

return "foo";

}

}

public class Bar extends Foo {

public void method2() {

System.out.println("bar 2");

}

}

Copyright 2008 by Pearson Education
8

A polymorphism problem
public class Baz extends Foo {

public void method1() {
System.out.println("baz 1");

}

public String toString() {
return "baz";

}
}

public class Mumble extends Baz {
public void method2() {

System.out.println("mumble 2");
}

}

 What would be the output of the following client code?

Foo[] elements = {new Foo(), new Bar(), new Baz(), new Mumble()};

for (int i = 0; i < elements.length; i++) {

System.out.println(elements[i]);

elements[i].method1();

elements[i].method2();

System.out.println();

}

Copyright 2008 by Pearson Education
9

 Add classes from top (superclass) to bottom (subclass).

 Include all inherited methods.

Diagramming the classes

Copyright 2008 by Pearson Education
10

Finding output with tables

method Foo Bar Baz Mumble

method1

method2

toString

method Foo Bar Baz Mumble

method1 foo 1 baz 1

method2 foo 2 bar 2 mumble 2

toString foo baz

method Foo Bar Baz Mumble

method1 foo 1 foo 1 baz 1 baz 1

method2 foo 2 bar 2 foo 2 mumble 2

toString foo foo baz baz

Copyright 2008 by Pearson Education
11

Polymorphism answer
Foo[] elements={new Foo(), new Bar(), new Baz(), new Mumble()};

for (int i = 0; i < elements.length; i++) {
System.out.println(elements[i]);
elements[i].method1();
elements[i].method2();
System.out.println();

}

 Output:
foo
foo 1
foo 2

foo
foo 1
bar 2

baz
baz 1
foo 2

baz
baz 1
mumble 2

