Building Java Programs

Chapter 5
Lecture 5-2: Random Numbers; procedural design

reading: 5.1, 5.6, 4.5

TOUR OF ACCOUNTING |§ il ARE
E NINE NINE | vou THAT'S THE
OVER HERE 2 NINE NINE 2 sure PROBLEM
WE HAVE OUR i NINE NINE | THATS WITH RAN-
RANDOM NUMBER |3 !l RANDOM? DOMNESS
& YOU CAN
GENERATOR.
- H R NEVER BE
o >
1 -
2 8
S %
:]

int getRandomNumber ()

return 4. // chosen by fair dice roll.
/I Quaranteed to be random.

http://xkcd.com/221/

http://xkcd.com/221/

The Random class

* A Random object generates pseudo-random numbers.
e Class Random is found in the java.util package.

55 13 eloR st N By A WS BR s B

Method name Description
Hes bt returns a random integer
nextInt (MaxX) returns a random integer in the range [0, max)
in other words, 0 to max-1 inclusive
nextDouble () returns a random real number in the range [0.0, 1.0)
» Example:

Random rand = new Random{() ;
int randomNumber = rand.nextInt (10); // 0-9

e ———

Generating random numbers

e Common usage: to get a random number from 1 to N

int n = rand.nextInt(20) + 1; // 1-20 inclusive

* To get a number in arbitrary range [min, max] inclusive:

name.nextInt (size of range) + min

« Where size of range is (max - min + 1)

« Example: A random integer between 4 and 10 inclusive:

int n = rand.nextInt(7) + 4;

o — o

/ : : STTERTa——
Random questions

e Given the following declaration, how would you get:
Random rand = new Random{() ;

e A random number between 1 and 47 inclusive?
e SV AT O e 1 BNy Ar 1 AU L 2 e N A M S P Sy S e

e A random number between 23 and 30 inclusive?
TRV randomisy —wkan Gy e X b (8 iR

e A random even number between 4 and 12 inclusive?
509 N AY S ARG @) | Mo TN A= I 60 BN AT =D Bl B G B M) oo gt CoRev)

— o

Random and other types

* nextDouble method returns a double between [0.0, 1.0)

« Example: Get a random GPA value between [1.5, 4.0):
double randomGpa = rand.nextDouble() * 2.5 + 1.5;

* Any set of possible values can be mapped to integers

» code to randomly play Rock-Paper-Scissors:

TR rancenoxXx b B3

if (r == 0) {
SysEemsotpRiEE IR MR Ociie i)

} else 1f (r == 1) {
System.out.println ("Paper");

RN T R T
SysEemyoutsprintinthsSerssor sy

}

B

Random question

 Write a program that plays an adding game.

» Ask user to solve random adding problems with 2-5 numbers
in the range from 1 - 10.

» The user gets 1 point for a correct answer, O for incorrect.
» The program stops after 3 incorrect answers.

T o P e A VR ey

I Ve A &

B 2D,
Wrong! The answer was 30
5 + 9 =13

Wrong! The answer was 14
v O O)

T S O

M O M T T
Wrong! The answer was 32
You earned 4 total points

i

Random answer

// Asks the user to do adding problems and scores them.
N1 (1 010 i WA= A= Eom 15 B i)

public class AddingGame {
015N O IV GRS A 7S b i b ANV A G ST & A = 0 1 4 o 8 0) o= 0 0 o) AL
Scanner console = new Scanner (System.in);
Random rand = new Random() ;

// play until user gets 3 wrong
NN N aiy OY WA B S Y

int wrong = 0;

T daBa Y VA B il OG0 G 1y R |

int result = play(console, rand); // play one game

if (result == 0) {
wrong+t+;
} else {
PO RN
}
t

Sy SenwolseprintlmYourearnedy i FapelnEsuint b oba i pOREn s v

i

Random answer 2

// Builds one addition problem and presents it to the user.
// Returns 1 point if you get it right, 0 if wrong.
public static int play(Scanner console, Random rand) {

// print the operands being added, and sum them
int operands = rand.nextInt(4) + 2;

int sum = rand.nextInt (10) + 1;
System.out.print (sum) ;

O AR A A A A B VA A AV AR e VS 1 L W A N AR e S I
int n = rand.nextInt (10) + 1;
sum += 1n;
B T | DA O AN HAA MA L M VA S A I

t

System.out.print (" = ");

// read user's guess and report whether it was correct

int guess = console.nextInt();
if (guess == sum) {
return 1;
} else {
System.out.println ("Wrong! The answer was " + total);

return 0;

Procedural design

reading: 4.5

" —

Recall: BMI program

Formula for body mass index (BMI):

‘weight
height”

BMI = x 703

BMI Weight class
below 18.5 | underweight
18.5 - 24.9 | normal
25.0 - 29.9 | overweight
30.0 and up | obese

* Write a program that produces output like the following:

This program reads data for two people and
computes their body mass index (BMI).

Enter next person's information:
height (in inches)? 70.0
R S AR e IRV SYONBN AN Vot e 500 Y. A0l

Enter next person's information:
hevghEirnyinches) 26255
weight (in pounds)? 130.5

Person 1 BMI = 27.868928571428572
overwelght

Person 2 BMI = 23.485824

normal

Difference = 4.,3831045714285715

ol

Presenter
Presentation Notes
// This program computes two people's body mass index (BMI) and
// compares them. The code uses parameters, returns, and Scanner.

import java.util.*; // so that I can use Scanner

public class BMI {
 public static void main(String[] args) {
 System.out.println("This program reads in data for two people and");
 System.out.println("computes their body mass index (BMI)");
 System.out.println();

 // finish me!

 }
}

N N e s it o

"Chaining”

* main should be a concise summary of your program.

o It is bad if each method calls the next without ever returning
(we call this chaining):

e | methodA

T~ methodB |

methodC]

methodD

* A better structure has main make most of the calls.
» Methods must return values to main to be passed on later.

e T~ methodA

\\\JmethodB

methodD

T methodC

452

B S
Bad "chain" code

pubitiewe e R M
SNl oM e A R e A o VeI o Y B/ W1 1 Y= Ml 6 M) o sy v M R0 o o A= e s T IV
Sy stemyoutyprinttlin it Thisvwprogramyreadswainavte ey
Scanner console = new Scanner (System.in);
person (console) ;

}

public static void person (Scanner console) {
System.out.println ("Enter next person's information:");
System.out.print ("height (in inches)? ");
double height = console.nextDouble () ;
getWeight (console, height) ;

}

TN S e N A SRR T O Ve TN e A e O A sl B e 0 B B AT S N Ay S S RV A AL Bediv o KOV B s MM R S R I B JoR |
R A B 0 s N Sy N A A AR A0 iy PRI (A 5 A2 O TORN B D6 s A A 100
double weight = console.nextDouble ()
computeBMI (console, height, weight);

}

pubilbievgtarievwvoidicompute BMTUS canne sy waderbilavhyry domolermrvy

}

455

Procedural heuristics

1. Each method should have a clear set of responsibilities.
2. No method should do too large a share of the overall task.
3. Minimize coupling and dependencies between methods.

4. The main method should read as a concise summary of
the overall set of tasks performed by the program.

5. Data should be declared/used at the lowest level possible.

14

	Building Java Programs
	Slide Number 2
	The Random class
	Generating random numbers
	Random questions
	Random and other types
	Random question
	Random answer
	Random answer 2
	Procedural design
	Recall: BMI program
	"Chaining"
	Bad "chain" code
	Procedural heuristics

