
1

Building Java Programs
Chapter 5

Lecture 5-2: Random Numbers; procedural design

reading: 5.1, 5.6, 4.5

2

http://xkcd.com/221/

http://xkcd.com/221/

3

The Random class
 A Random object generates pseudo-random numbers.

 Class Random is found in the java.util package.
import java.util.*;

 Example:

Random rand = new Random();
int randomNumber = rand.nextInt(10); // 0-9

Method name Description
nextInt() returns a random integer
nextInt(max) returns a random integer in the range [0, max)

in other words, 0 to max-1 inclusive
nextDouble() returns a random real number in the range [0.0, 1.0)

4

Generating random numbers
 Common usage: to get a random number from 1 to N

int n = rand.nextInt(20) + 1; // 1-20 inclusive

 To get a number in arbitrary range [min, max] inclusive:

name.nextInt(size of range) + min

 Where size of range is (max - min + 1)

 Example: A random integer between 4 and 10 inclusive:

int n = rand.nextInt(7) + 4;

5

Random questions
 Given the following declaration, how would you get:

Random rand = new Random();

 A random number between 1 and 47 inclusive?
int random1 = rand.nextInt(47) + 1;

 A random number between 23 and 30 inclusive?
int random2 = rand.nextInt(8) + 23;

 A random even number between 4 and 12 inclusive?
int random3 = rand.nextInt(5) * 2 + 4;

6

Random and other types
 nextDouble method returns a double between [0.0, 1.0)

 Example: Get a random GPA value between [1.5, 4.0):
double randomGpa = rand.nextDouble() * 2.5 + 1.5;

 Any set of possible values can be mapped to integers
 code to randomly play Rock-Paper-Scissors:
int r = rand.nextInt(3);
if (r == 0) {

System.out.println("Rock");
} else if (r == 1) {

System.out.println("Paper");
} else { // r == 2

System.out.println("Scissors");
}

7

Random question
 Write a program that plays an adding game.

 Ask user to solve random adding problems with 2-5 numbers
in the range from 1 - 10.

 The user gets 1 point for a correct answer, 0 for incorrect.
 The program stops after 3 incorrect answers.

4 + 10 + 3 + 10 = 27
9 + 2 = 11
8 + 6 + 7 + 9 = 25
Wrong! The answer was 30
5 + 9 = 13
Wrong! The answer was 14
4 + 9 + 9 = 22
3 + 1 + 7 + 2 = 13
4 + 2 + 10 + 9 + 7 = 42
Wrong! The answer was 32
You earned 4 total points

8

Random answer
// Asks the user to do adding problems and scores them.
import java.util.*;

public class AddingGame {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);
Random rand = new Random();

// play until user gets 3 wrong
int points = 0;
int wrong = 0;
while (wrong < 3) {

int result = play(console, rand); // play one game
if (result == 0) {

wrong++;
} else {

points++;
}

}

System.out.println("You earned " + points + " total points.");
}

9

Random answer 2
...

// Builds one addition problem and presents it to the user.
// Returns 1 point if you get it right, 0 if wrong.
public static int play(Scanner console, Random rand) {

// print the operands being added, and sum them
int operands = rand.nextInt(4) + 2;
int sum = rand.nextInt(10) + 1;
System.out.print(sum);

for (int i = 2; i <= operands; i++) {
int n = rand.nextInt(10) + 1;
sum += n;
System.out.print(" + " + n);

}
System.out.print(" = ");

// read user's guess and report whether it was correct
int guess = console.nextInt();
if (guess == sum) {

return 1;
} else {

System.out.println("Wrong! The answer was " + total);
return 0;

}
}

}

Procedural design

reading: 4.5

11

Recall: BMI program
Formula for body mass index (BMI):

 Write a program that produces output like the following:
This program reads data for two people and
computes their body mass index (BMI).

Enter next person's information:
height (in inches)? 70.0
weight (in pounds)? 194.25

Enter next person's information:
height (in inches)? 62.5
weight (in pounds)? 130.5

Person 1 BMI = 27.868928571428572
overweight
Person 2 BMI = 23.485824
normal
Difference = 4.3831045714285715

7032 ×=
height
weightBMI

BMI Weight class
below 18.5 underweight
18.5 - 24.9 normal
25.0 - 29.9 overweight
30.0 and up obese

Presenter
Presentation Notes
// This program computes two people's body mass index (BMI) and
// compares them. The code uses parameters, returns, and Scanner.

import java.util.*; // so that I can use Scanner

public class BMI {
 public static void main(String[] args) {
 System.out.println("This program reads in data for two people and");
 System.out.println("computes their body mass index (BMI)");
 System.out.println();

 // finish me!

 }
}

12

"Chaining"
 main should be a concise summary of your program.

 It is bad if each method calls the next without ever returning
(we call this chaining):

 A better structure has main make most of the calls.
 Methods must return values to main to be passed on later.

main
methodA

methodB
methodC

methodD

main
methodA

methodB
methodC

methodD

13

Bad "chain" code
public class BMI {

public static void main(String[] args) {
System.out.println("This program reads ... (etc.)");
Scanner console = new Scanner(System.in);
person(console);

}

public static void person(Scanner console) {
System.out.println("Enter next person's information:");
System.out.print("height (in inches)? ");
double height = console.nextDouble();
getWeight(console, height);

}

public static void getWeight(Scanner console, double height) {
System.out.print("weight (in pounds)? ");
double weight = console.nextDouble();
computeBMI(console, height, weight);

}

public static void computeBMI(Scanner s, double h, double w) {
...

}
}

14

Procedural heuristics
1. Each method should have a clear set of responsibilities.

2. No method should do too large a share of the overall task.

3. Minimize coupling and dependencies between methods.

4. The main method should read as a concise summary of
the overall set of tasks performed by the program.

5. Data should be declared/used at the lowest level possible.

	Building Java Programs
	Slide Number 2
	The Random class
	Generating random numbers
	Random questions
	Random and other types
	Random question
	Random answer
	Random answer 2
	Procedural design
	Recall: BMI program
	"Chaining"
	Bad "chain" code
	Procedural heuristics

